博客
关于我
因子分解机FM算法原理
阅读量:281 次
发布时间:2019-03-01

本文共 518 字,大约阅读时间需要 1 分钟。

因子分解机(Factorization Machines, FM)是一种近年来在机器学习领域引起广泛关注的新型模型,旨在解决因子分解问题。它结合了传统矩阵分解和深度学习技术的优势,适用于多种数据建模场景。

FM算法的核心思想是将一个高维的矩阵分解为低秩的因子叠加。与传统的矩阵分解方法相比,FM能够更好地捕捉数据中的低维结构特征。其核心公式可以表示为:

[ A = \sum_{i=1}^r g_i x_i y_i^T ]

其中,( A ) 是原矩阵,( r ) 是因子数量,( x_i ) 和 ( y_i ) 是对应的行和列因子,( g_i ) 是每个因子的权重。

FM算法的主要优势体现在以下几个方面:

  • 低计算复杂度:FM通过引入稀疏性假设,减少了计算量,尤其在数据稀疏的情况下表现优异。

  • 灵活性强:可以处理各种类型的数据矩阵,包括非正则化的数据和小规模的数据。

  • 适用性广:应用于推荐系统、自然语言处理、计算机视觉等多个领域。

  • FM模型的训练过程通常采用梯度下降等优化算法,通过逐步更新参数来优化预测结果。其性能表现通常与传统矩阵分解方法相当,甚至在某些复杂场景下表现更优。

    如果需要更深入了解FM算法,可以参考相关论文或技术文档。

    转载地址:http://xtkx.baihongyu.com/

    你可能感兴趣的文章
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Number Sequence(kmp算法)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>